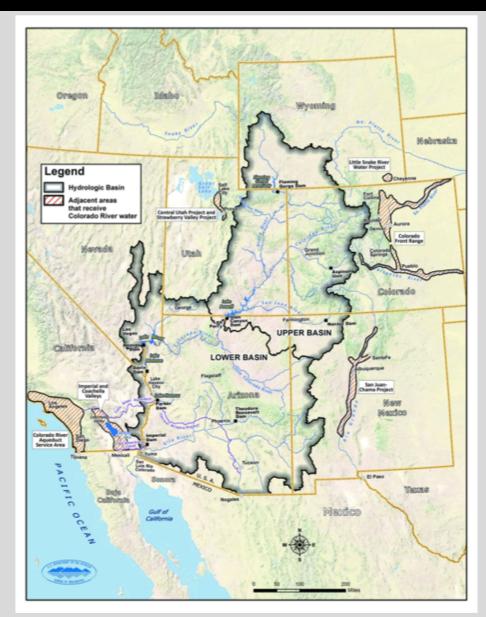
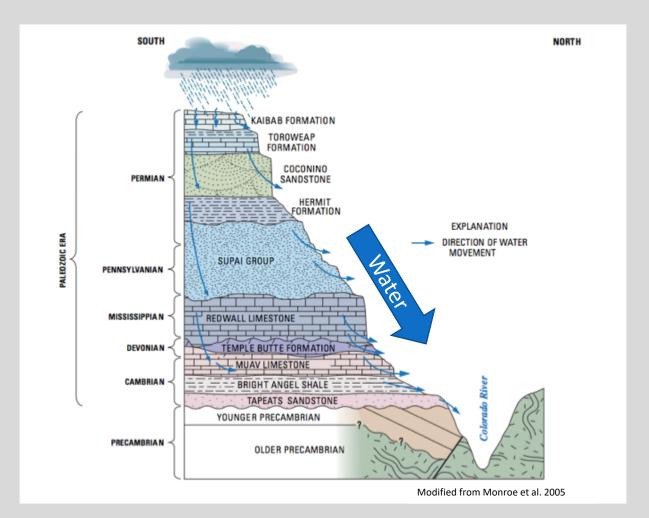
GROUNDWATER-SURFACE WATER INTERACTIONS OF THE GRAND CANYON

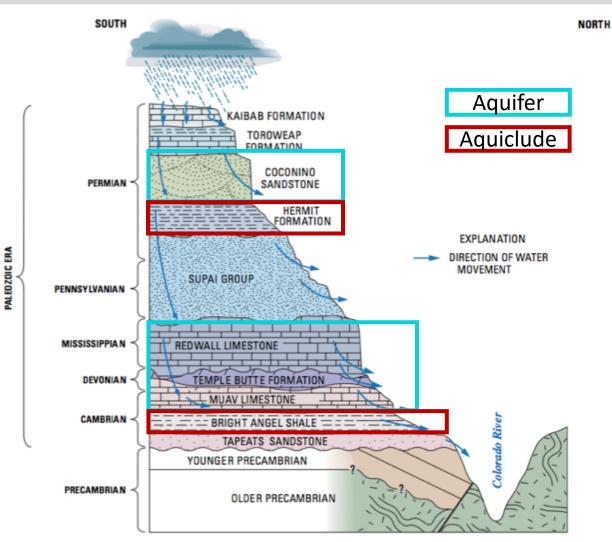


Alysa (Amy) Yoder

INTRODUCTION

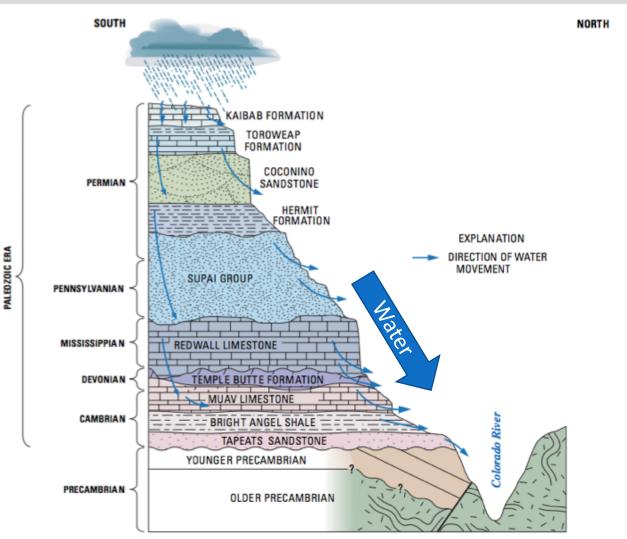

The Colorado River Basin:

- Supplies water to more than 50 million people
- Irrigates 4 million acres of cropland in the U.S. and Mexico
- Source for hydropower plants generating more than 10 billion kilowatt-hours annually



INTRODUCTION

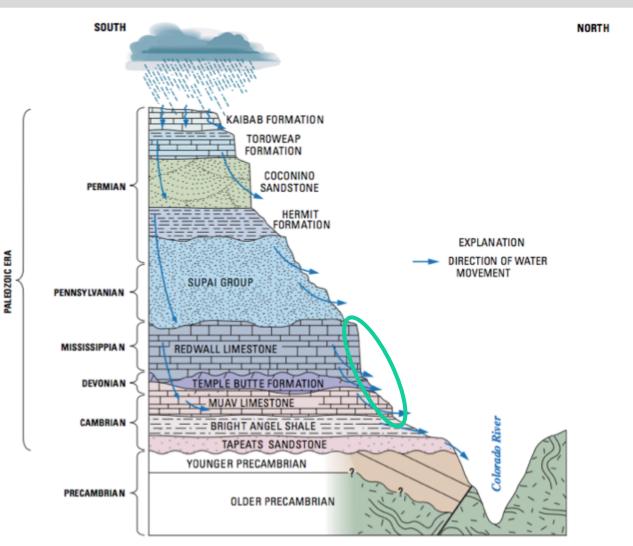
• 56% of the Colorado River's flow originates as groundwater



HYDROLOGIC SETTING

- The Paleozoic Redwall and Muav formations are the main waterbearing units of the Grand Canyon
- At 900 m below the canyon rim, interconnected karstified limestone allow transport of water

HYDROLOGIC SETTING



 Unusual system because the entire surface water system is located beneath majority of the aquifer

system

•

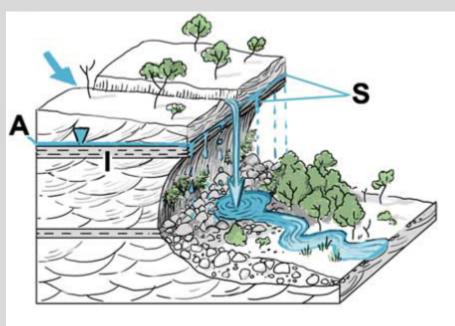
Groundwater is Surface water and not the other way around

Modified from Monroe et al. 2005

- Snowmelt and rainwater from overlying land travels down through geologic formations
- This water exits the hydrogeologic units through springs
- Spring: an ecosystem created when groundwater meets the ground surface

6

• 10 of the 12 spring types can be found in the Grand Canyon


Carbonate mound-form

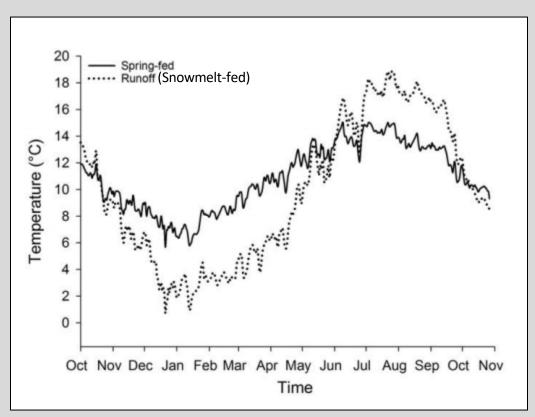
• 10 of the 12 spring types can be found in the Grand Canyon

Hanging garden



Springer and Stevens 2008

• 10 of the 12 spring types can be found in the Grand Canyon



Cave

Springer and Stevens 2008

- Spring-fed streams have a longer residence time than snowmeltfed streams
- Creates less variability in temperature

Lusardi et al. 2016

- Spring environments support 100 to 500x the species diversity than their surroundings
- Springs comprise only 0.01% of Grand Canyon's land mass and host 36% of the flora and fauna
- During low flow season, groundwater is the sole source of flow in spring-fed tributaries

Grand Canyon Wetsalts Tiger Beetle

- Roaring Springs, located on the North Rim at 5200 ft, provides drinking water for the North Rim, South Rim and the inner Canyon
- The 12.5 mile Transcanyon Pipeline delivers water to Grand Canyon Village
- Water is first transported to Indian Creek (3800 ft) by gravity
- Water is pumped to Grand Canyon village at 7043 ft elevation
- Roaring Springs provides 21 cfs of consistent flow

Roaring Springs

GROUNDWATER SCARCITY

- Aquifer systems have had significant storage reductions due to growth of surrounding communities such as Flagstaff, AZ
- Trends of decreasing discharge has been observed in Springs throughout the Park
- Trends of decreasing discharge, increased pumping and effects of climate change could damage spring-fed ecosystems over relatively short timescales (Kobor 2004)

Havasu Spring

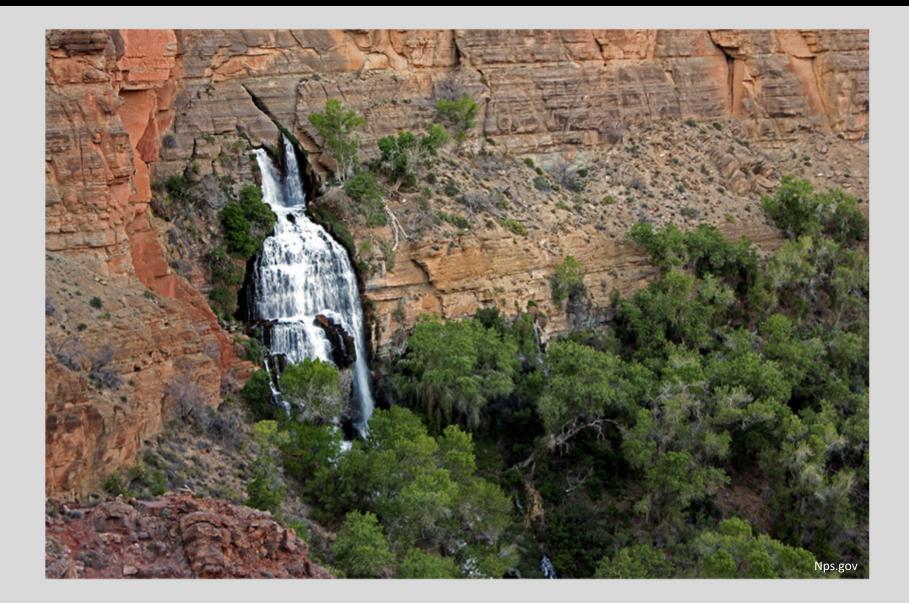
WATER MANAGEMENT

- 100% of the Park's water supply is from the unreliable Transcanyon Pipeline
- Grand Canyon National Park's water demand is expected to double by 2050 (reaching 1,255 acft/year)

WATER MANAGEMENT

- Bureau of Reclamation conducted a water appraisal study in 2002 to plan for future water needs
 - Potential strategies include
 - Drilling a well into the aquifer that supplies Roaring Springs
 - Increasing durability of the Transcanyon Pipeline
 - Construction of pumping plant on Bright Angel Creek
- Proposed Tusayan Development and Grand Canyon Escalade projects have fallen through

WATER MANAGEMENT


- Arizona relies on groundwater for 40% of their water supply
- After severely over-extracting their aquifer systems during the 20th century, Arizona began managing their groundwater in 1980
 - Passed a Groundwater Management Code that aims to ensure sustainable groundwater pumping practices by 2025

REFERENCES

1.	Bureau of Reclamation. Grand Canyon National Park Water Supply Appraisal Study. (2002).
2.	Castle, S. L. et al. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 41, 5904–5911 (2014).
3.	Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P. & Palmer, R. N. The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin. Clim. Change 62, 337–363 (2004).
4.	Crossey, L., Fischer, T., P. P & 2006, undefined. Dissected hydrologic system at the Grand Canyon: Interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. pubs.geoscienceworld.org
5.	Enquist, C. A. et al. Foundations of translational ecology. Front. Ecol. Environ. 15, 541–550 (2017).
6.	Forest Service, U. Final Environmental Impact Statement for the Kaibab National Forest Land and Resource Management Plan Coconino, Yavapai, and Mojave Counties, Arizona. (2014).
7.	Jeremiah Kobor, by S., Springer, A. E., Anderson, D. E. & Blakey, R. C. SIMULATING WATER AVAILABILITY IN A SPRING-FED AQUIFER WITH SURFACE WATER/GROUNDWATER FLOW MODELS, GRAND CANYON, ARIZONA. (2004).
8.	Lusardi, R. A. ; <i>et al.</i> Environment shapes invertebrate assemblage structure differences between volcanic spring-fed and runoff rivers in northern California Item type Article Environment shapes invertebrate assemblage structure differences between volcanic spring-fed and runoff rivers in northern California Item type Article Environment shapes invertebrate
9.	Meinzer, O. E. LARGE SPRINGS IN THE UNITED STATES. U.S. Geol. Surv. Water Supp, 557 (1927).
10.	Miller, M. P., Buto, S. G., Susong, D. D. & Rumsey, C. A. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resour. Res. 52, 3547–3562 (2016).
11.	Monroe, S., Antweiler, R., Hart, R., Taylor, H. & Truini, M. Chemical characteristics of ground-water discharge along the south rim of Grand Canyon in Grand Canyon National Park, Arizona, 2000-2001. (2005).
12.	Robbins, M. Under Pressure: The link between surface and groundwater in the Grand Canyon Education at the Center for Watershed Sciences. Education at the Center for Watershed Sciences (2016). Available at: https://watershed.ucdavis.edu/education/classes/ecogeomorphology-grand-canyon-2016/flogs/under-pressure-link-between-surface-and-groundwater-grand.
13.	Springer, A. E. & Stevens, L. E. Spheres of discharge of springs. Hydrogeol. J. 17, 83–93 (2009).
14.	Wesoloski, C. The Pressure on Groundwater in the Grand Canyon. Educ. Cent. Watershed Sci. (2017).
15.	Williams, T. M., Tobin, B. W. & Schenk, E. R. DETERMINING THE CONTRIBUTING STREAMFLOW FROM CRYSTALLINE AND CARBONATE-KARST AQUIFERS IN RELATION TO HYPORHEIC FLOW IN SPRING FED BRIGHT ANGEL CREEK, GRAND CANYON NATIONAL PARK, AZ. in (2016). doi:10.1130/abs/2016AM-281745
16.	Springs-Dependent Species of the Grand Canyon — Springs Stewardship Institute. Available at: http://springstewardshipinstitute.org/springs-dependent-species-of-the-grand-canyon/.
17.	National Water Census - Colorado River Basin Focus Area Study. United States Geological Survey (2016). Available at: https://water.usgs.gov/watercensus/colorado.html.
18.	10 Spring Types Are Found in Grand Canyon - Grand Canyon National Park (U.S. National Park Service). Available at: https://www.nps.gov/grca/learn/nature/spring-types.htm.

QUESTIONS?

