Lecture 1: Tectonic and Climatic
Setting of the Skeena Watershed

e Controls on Watershed
Character

e Neotectonics of
British Columbia

e Climate of British
Columbia

e Hydrologic setting of
the Skeena



Watershed Controls

* Dependent versus
independent variables



Tectonic Setting

e Tectonics as a
fundamental control
on watershed rock
type

e Tectonic control on
style and rates of uplift

e Tectonic influences on
regional and local
climate
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The Hydrologic Cycle
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Sediments and
Basaltic

Volcanic Arc Silicic Ocean Crust Spread;
Marginal Continental preading,

basin spreading Subduction  Crust creation of
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* Five Morphogeologic
Belts in Canadian
Cordillera

e Each belt with distinctive
rock types, landforms

e Belts reflect 750 my of
activity at North American
Plate margin




Foreland Belt: Rocky,

Mackenzie and Franklin
Mountains

Precambrian and Paleozoic
sedimentary rocks

Western margin of North
America until Jurassic

Folded and thrust eastward
in late Jurassic-Early
Tertiary



Omineca Belt: Purcell,
Selkirk, Monashee,
Cariboo, Omineca, Cassiar
and Selwyn Mountains

Sedimentary, volcanic and
granitic rocks

Accreted terranes

Granitic/volcanic rocks of
arc

Detforemed 1n late
Jurassic-early Teritary



Intermontane Belt: Interiar,
Stikine and Yukon Plateaus and
Skeena Mountains

Volcanic, sedimentary and
granitic rocks

Accreted terranes (Stikine)

Thick sedimentary deposites of
Mesozoic-early Teritiary age
(Bowser Basin)

Extensional basins in Mesozoic
and Cenozoic

Volcanic arcs



Coast Belt: Coast and
Cascade Mountains

Granitic and volcanic
rocks

Jurassic through present-
day volcanic arcs

Large strike-slip or
transform faults

I_ocal accreted terranes



Insular Belt: Insular
Mountains, Saint Elias
Ranges, coastal
depressions, islands,
continental shelf and slope

Volcanic, sedimentary and
granitic rocks

Subduction zone accretion
Volcanic arcs
Large strike-slip faults
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Skeena Watershed:

e Coast Belt and
Intermontane Belt

* High rates of uplift in Coast
Belt/Coast Mountains

* Intermontane Belt is
extensional (pull-apart)
with broad uplift
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Topography of the Coastal Forest and Mountains

Coast Mountains

e Extensive range in coastal
BC

e Uplift began 10 MA at
220m/MA

eAccelerated to 400+m/MA
2.5 MA

*Causes of accelerated uplift
due to glacial exhumation?

eDominant influence on
climate during the Pleistocene
and Holocene
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Cordilleran Ice Sheet

e Extensive Pleistocene

1ce sheet that coveren
most of North
America

e Multiple expansions
and retreats of ice
sheets

e Significant, but

disputed impacts in
British Columbia
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Feedbacks

Climate controls glacier mass balance, temperature, size,
thermal regime, movement and geomorphic activity

Glaciers influence albedo, surface energy balance,
atmospheric and oceanic circulation

Elevation controls rates of accumulation and ablation in
glaciers

Uplift controls rate of accumulation and rate of erosion



Mass Balance 1in Glaciers

e Mass balance is a function of:
— Inputs (accumulation)
— Throughputs (transport)
— Outputs (ablation)

e Links climate change, uplift and glacial
variation
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Phases of Ice Flow

e Ice Expansion:

controlled by local
accumulation and
topography

e Maximum:
uncontrolled by
topography

e Late: topographic

control during retreat



Historical understanding of last glacial maxima in BC
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e Climate 1n the Skeena
Watershed a function
of tectonic setting and
its interactions with
ocean/atmospheric
circulation patterns

e Multiple time scales of

variation, including
seasonal, interannual,
decadal....
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Fig. 4. Time-series plot of discharge (m'/s) from the Skeena River at Usk from 19835 to 1993,



El Nino and Pacific Decadal

Oscillations
WINTER SEA LEVEL PRESSURE PATTERN * EVidenCG fOI’
A 1976.1977 Monthly Streamflow

fluctuations in sea
surface temps at
various timescales.

e EIl Nino events vary
from 6 -18 months

* Pacific Decadal
Oscillation events vary
from 20-30 years




Modes of Pacific climate
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WINTER SEA LEVEL PRESSURE PATTERN

A 1976-1977 Monthly Streamflow
[_] Below average

B Above average
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Intensity and Location of the
Aleutian Low
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From: Gargett: Fish. Oceanogr. 6: 109-117
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PDO turns sharply negative in
mid 1998
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Climate Change 1n British Columbia According to Ministry of
Water, Land and Air

eAverage annual temperature warmed by 0.6°C on the coast,
1.1°C in the interior, and 1.7°C in northern BC.

eNight-time temperatures increased across most of BC in spring
and summer.

e Precipitation increased in southern BC by 2 to 4 percent per
decade.

e Lakes and rivers become free of ice earlier in the spring.

e Sea surface temperatures increased by 0.9°C to 1.8°C along the
BC coast.

e Sea level rose by 4 to 12 centimetres along most of the BC
coast.

eTwo large BC glaciers retreated by more than a kilometre each.
e The Fraser River discharges more of its total annual flow earlier
in the year.

eWater in the Fraser River is warmer in summer.

eMore heat energy is available for plant and insect growth.



AVERAGE

TEMPERATURE

Average temperature increased over
most of BC during the 20th century.
Spring is warmer on average than it was
100 years ago. Higher temperatures

drive other changes in climate systems
and affect physical and biological systems
in BC. They can have both positive and
negative impacts on human activities.
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Metres

Change in Glacier Terminus
Position, 1895-1995
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Change in Timing of One-third of
Fraser River Annual Flow, 1912-1998
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Change in Average Fraser River
Temperature, 1953-1998
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MOUNTAIN PINE BEETLE
RANGE

SOURCE: Canadlan Forest Servce



Distribution of Mountain Pine Beetle
Infestations, 1910-1970
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Range of lodgepole pine
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Impacted by Summer Rearing
Habitat




Steelheac




